ПроектВиК

Обновление от 30.03.2016

http://www.uniservice-europe.co.uk/rus/vik2011

Поддержка AutoCAD 2017

Обновление добавляет поддержку AutoCAD 2017. Детально.

Совместное использование. Настройки общих каталогов

В ПроектВиК добавлена настройка пути к каталогу данных, теперь его можно перенести на сетевой ресурс для организации совместной работы с данными и настройками. <u>Детально.</u>

Экспорт 3Д-модели в Autodesk Navisworks

Для экспорта информации в Autodesk Navisworks внесены изменения в механизм построения 3Дмодели. Кроме визуального представления сетей экспортируются также все сведения об изделиях. <u>Детально.</u>

Обновление гидравлического расчета

Добавлена возможность совмещать объекты водопровода с другими XT на плане, что позволяет в любой момент нанести на сети объекты водопровода и выполнить гидравлический расчет без корректировки проекта. <u>Детально.</u>

Доработка расчетов объемов траншей и котлованов

Внесены изменения в расчет объемов траншей и котлованов. Расчет удалось сделать более точным и учесть пожелания пользователей. <u>Детально.</u>

Сохранение ранее нанесенных отметок при сборе новых отметок по ЦМР

Добавлена опция, которая позволит сохранять ранее нанесенные отметки при сборе новых. Детально.

Обновление справочных материалов

В данным обновлении обновлены справочник команд и техническое описание и инструкция по установке программы в связи с расширениями в функциональности команд и переходе на Autodesk AutoCAD 2017.

Поддержка AutoCAD 2017

Обновление добавляет поддержку AutoCAD 2017.

Рабочие файлы ПроектВиК2011 устанавливаются в каталог:

<u>C:\Program Files\Uniservice\ПроектВиК2011\acad2017</u>.

Там же находится основной загружаемый файл ProjectVIK2011.arx.

Каталог данных для AutoCAD 2017 находится аналогично предыдущим выпускам:

<u>C:\ProgramData\Uniservice\ПроектВиК2011(AutoCAD 2017)</u>

И открывается по команде Пуск – Все программы – ПроектВиК2011 – Инструмент – Каталог данных.

Тестирование ПроектВиК2011 проведено на платформе Windows 10 + AutoCAD 2017 + Office 2016.

Совместное использование. Настройки общих каталогов

В этом обновлении добавлена возможность указать размещение каталога данных. Каталог данных может быть перенесен в общей сетевой каталог, что позволит всем проектировщикам в организации использовать одни и те же каталоги изделий, колодцев и др.

Чтобы организовать работу с каталогом данных по сети необходимо выполнить следующие шаги.

- 1. AutoCAD с ПроектВиК должен быть закрыт.
- 2. Создаем в сети каталог данных. Проще всего скопировать все файлы из каталога, который поставляется вместе с ПроектВиК.
- 3. Некоторые файлы ПроектВиК перемещать нельзя:
 - Каталог Menu и все что в нем находится.
 - Файл ProjectVIK2011.pch
- 4. Также некоторые файлы привязаны к конкретному компьютеру и также не могут быть вынесены в общедоступное место:
 - ВиК.log
 - Настройки.xml
 - Проекты.xml
 - Фильтр столбцов.xml
- 5. Далее запускам ПроектВиК и вводим команду расширенных настроек: ВИК_ОПЦ_ВСЕ
- 6. В открывшемся окне настроек находим категорию «general-opt» и настройку «external-datafolder». Прописываем в нее путь к сетевому каталогу данных.
- 7. Закрываем AutoCAD, чтобы применились настройки.
- 8. Запускаем AutoCAD. Программа должна была загрузить информацию из каталога данных в новом расположении.

AH	астройки программы		x		
+	bearing-opt case-opt		^		
÷	cellar_opt cpnt-opt				
÷ ÷	db-opt dbl-click-opt dev-opt		=		
÷	device-opt exp-opt				
	Ent-debug-mode ErrorFile	C:\ProgramData\Uniservice			
	external-data-folder geometry-esp net-min-length	\\vikserver\Share\data201 0.00 0.05			
÷	net-vert-min-dist hydro-opt	0.20			
+	intersect_opt mark-opt model				
+ +	net-opt				
+	net-section path-opt				
÷	pipe-layout ternal-data-folder		•		
путь к внешенму каталогу данных					
		ОК Отме	на		

Рекомендуется проводить процедуру перемещения каталога данных опытным пользователям или системным администраторам.

В следующем обновлении файлы, которые можно перенести будут устанавливаться в каталог ProgramData, а те что сохраняют настройки пользователя в профиль пользователя.

Обратите внимание то путь должен заканчиваться слешем «\».

Экспорт 3Д-модели в Autodesk Navisworks

3Д-модель в ПроектВиК создается с помощью блоков, которые содержат информацию об изделиях, которые они обозначают. При открытии чертежа в Navisworks с моделью, созданной в ПроектВиК блоки отображаться, но доступа к информации об изделиях нет. Для решения этой проблемы в ПроектВиК добавлена настройка с которой блоки изделий будут создаваться со скрытыми атрибутами, которые будут отображаться на чертеже, но их можно будет просмотреть в свойствах вхождения блока. Те же атрибуты будут отображаться и в Navisworks.

Чтобы сгруппировать изделия по сетям, к которым они относятся, решено задавать изделиям слой, который соответствует маркировке сети, которой это изделие принадлежит. В Navisworks такие изделия будут также отображены в одно узле, с названием слоя.

Для создания 3Д-модели пригодной к экспорту в Navisworks необходимо выполнить следующие шаги:

1. Подготовили проект.

2. Перед созданием 3Д-модели выполняем команду _VIK_OPT_FULL – видим все настройки программы. Устанавливаем флажок для настройки «use-attributes» в группе настроек «model».

н	астройки программы		х
-			
+	cellar_opt		
+	cpnt-opt		
+	db-opt		
+	dbl-click-opt		
+	dev-opt		
+	device-opt		
+	exp-opt		-
+	general-opt		=
+	hydro-opt		
+	intersect_opt		
+	mark-opt		
	model		
	dist-in-light-diff-pipes	0.40	
	dist-in-light-equal-pipes	0.20	
	mark-by-wellSide		
	model-layer-prefix	ВИК_НВК_ЗМ_МОДЕЛЬ_	
	sd-tracing-type	v	
	sync-prof-name		
	tracing-file	C:\ProgramData\Uniservice	
	tracing-file-SD	C:\ProgramData\Uniservice	
	use-attributes		
_	use-xref-in-model	V	
+	net-cut-opt		
+	net-opt		
±	net-section		-
+	pain-opi		•
Да	ополнить блоки изделий в 3Д раметрами изделий	модели атрибутами с	
		ОК Отмена	•

3. Формируем 3Д-модель и сохраняем ее в файл. Теперь при выделении блоков можно видеть атрибуты, но оны скрытые и на самом чертеже не отображаются.

4. Открываем файл в Navisworks и теперь для блоков можем просмотреть содержимое атрибутов, также атрибуты доступны для различных фильтров и операций в самом Navisworks.

Обновление гидравлического расчета

Это обновление добавляет некоторые удобства при проведении гидравлического расчета.

Во-первых, теперь можно совмещать объекты трубопровода, расставляемые на плане, с ХТ и другими точками ПроектВиК. Это удобно так как нанести объекты водопровода можно в любое время без необходимости проводить синхронизацию.

Во-вторых, добавлена возможность фиксировать отметку объекта водопровода. Для этого в окне свойств объекта водопровода необходимо снять флажок «Автоматически рассчитывать отметку» и задать значение «Геодезическая отметка, м».

-	Входные данные		
	Режим	Включен	ī
	Наименование насосной с	Насосная станция	
	Геодезическая отметка, м	24.30	
	Способ задания насоса	Только давлением после н	
	Марка насоса		
	Номинальный напор разви	0.00	-
	Номинальный напор после	0.00	
	Количество параллельно р	1	
	Частота вращения насоса,	0.00	
	Минимальное количество	1	
	Максимальное количество	1	
	Автоматически рассчитыв		
	Выходные данные		
	Текущий расход воды, л/с	0.00	
	Напор на входе, м	0.00	
	Напор на выходе, м	0.00	
	Время прохождения воды	0.00	4
За	одезическая отметка, м здается отметка оси насоса, ус сосной станции	тановленного на данной	

Напоминаем, что для проведения гидравлического расчета необходимо чтобы на компьютере был установлен компонент ZuluNetTools (Политерм). Загрузить компонент можно по адресу:

https://www.politerm.com/products/devtools/zulunettools/

Доработка расчетов объемов траншей и котлованов

Расчет объема траншеи

Траншея и ее элементы (подсыпка и обратная засыпка) имеют форму призматоида. Для определения объема призматоида используется формула Симпсона:

$$V = \frac{1}{6}L(S_1 + 4S' + S_2),$$

где L – высота призматоида (плановая длина траншеи), S₁ – площадь начального основания призматоида, S₂ – площадь конечного основания призматоида, S' – площадь сечения, равно отдаленного от начального и конечного оснований. Площадь начального основания определяется в начальной точке расчетного участка, площадь конечного основания соответственно в конечной точке расчетного участка. Площадь равно отдаленного сечения рассчитывается.

Общий вид разреза траншеи представляет собой трапецию, такую же форму имеет подсыпка и обратная засыпка. Также на протяжении траншеи ее высота и ширина меняются по трапеции.

Для расчета площади трапеции используется формула:

$$S = \frac{W_1 + W_2}{2} \cdot H$$

где, W₁ – ширина нижнего основания трапеции, W₂ – ширина верхнего основания трапеции, H – высота трапеции. Входными данными для расчета трапеции траншеи являются ширина дна траншеи, откосы и глубина заложения трубы. Ширина верхнего основания трапеции определяется по формуле:

$$W_2 = W_1 + 2Hs$$

где s — значение уклона боковой стороны трапеции к нижнему основанию выраженное через тангенс:

$$s = tg(\alpha)$$

Для расчета площади равноудаленного сечения траншеи, которое также является трапецией дополнительно рассчитываются высота и ширина нижнего основания.

Например, для определения высоты EF из трапеции ABCD используется следующая формула:

$$H = (H_1 < H_2; H_1; H_2) + x \cdot \frac{|H_1 - H_2|}{L}$$

где x – расстояние от H₁(AD), на котором необходимо найти высоту H, L – высота трапеции ABCD.

Описанные геометрические расчеты проводятся для трапеции и призматоида, которые описывают всю траншею целиком, подсыпку и обратную засыпку.

Также определенную сложность представляют участки, где высота обратной засыпки меньше диаметра трубы. В этом случае приходится учитывать сегмент трубы, который находится в пределах объема обратной засыпки. Поскольку на протяжении всего заложения трубы уровень обратной засыпки одинаковый, то объем обратной засыпки в таком случае может быть определен как:

$$V_f = V_p - V_s$$

где V_p – объем призматоида обратной засыпки, а V_s – объем с сечением в виде кругового сегмента:

$$V_s = LS$$

L – длина трубы на участке, а площадь кругового сегмента определяется по формуле:

$$S = \begin{cases} \frac{1}{2}r^{2}(\alpha - \sin(\alpha)), r \ge h\\ \pi r^{2} - \frac{1}{2}r^{2}(\alpha - \sin(\alpha)), r < h \end{cases}$$
$$\alpha = \begin{cases} 2 \cdot \cos^{-1}\frac{h}{r}, r \ge h\\ 2 \cdot \cos^{-1}\frac{h - r}{r}, r < h \end{cases}$$

r – радиус труби, h – высота обратной засыпки.

Расчет объема грунта, вытесненного трубой, производится по формуле объема цилиндра:

$$V = \pi R^2 L$$

где L – длина участка.

Определение откосов

Определение откосов производится по таблице из СНиП 12-04-2002.

Nº	_	Крутизна откоса при глубине выемки, м, не более			
п.п.	Виды грунтов	1.5	3.0	5.0	
		/-	- / -	- / -	
1	Насыпные не слежавшиеся	1:0,67	1:1	1:1,25	
2	Песчаные	1:0,5	1:1	1:1	
3	Супесь	1:0,25	1:0,67	1:0,85	
4	Суглинок	1:0	1:0,5	1:0,75	
5	Глина	1:0	1:0,25	1:0,5	
6	Лессовые	1:0	1:0,5	1:0,5	

Определение откоса идет по следующему алгоритму:

- 1. Определяем для рассчитываемого участка максимальную глубину заложения БЕЗ учета подсыпки.
- 2. По определенной глубине определяем список грунтов.
- 3. Из списка грунтов выбираем тот, у которого крутизна откоса наиболее пологая.

Для всей траншеи используется одно и тоже значение откоса, и оно одинаковое с обеих сторон (все трапеции в расчетах равнобедренные).

Определение ширины траншеи

Ширина нижнего основания всей траншеи (и ее подсыпки, если та присутствует) определяется по СП 45.13330.2012 (СНиП 3.02.01-87).

Согласно СП подбор ширины, для траншей с откосами 1:0,5 и круче производится по таблице 6.1 зависит от способа укладки трубопровода и материала трубы.

	Ширина траншеи, м			
Способ укладки трубопровода	сварное	раструбо	Муфтами, фланцами, раструбом	
		м	для керамических труб	
Плетями и отдельными секциями	D + 0.3, не			
при D <= 0.7м	менее 0,7м			
Плетями и отдельными секциями	1.5D			
при D > 0.7м				
Плетями и отдельными секциями	D+0.2			
при узкотраншейном методе				
Отдельными трубами D < 0.5	D + 0.5	D + 0.6	D + 0.8	
Отдельными трубами 0.5 < D < 1.6	D + 0.8	D + 1.0	D + 1.2	
Отдельными трубами 1.6 < D < 3.5	D + 1.4	D + 1.4	D + 1.4	

Если откосы положе 1:0,5 то ширина траншеи должна быть не менее диаметра трубы с добавлением 0,5м при укладке отдельными трубами (чугунные, асбесто- или хризотил- цементные трубы, трубы с раструбным соединением) и 0,3м при укладке плетями (стальные и пластиковые).

Если задана ширина ковша экскаватора, то ширина траншеи не может быть меньше ширины режущей кромки ковша с добавлением 0,15м в песках и супесях, 0,1м в глинистых грунтах, 0,4м в рыхлых скальных и мерзлых грунтах.

Особые случаи

В случае если участок представляет собой вертикальный перепад расчет не будет проведен, считаем, что объем земли перепада учтен в участке, который прокладывается нормально подземным способом.

Для участков с надземной прокладкой будет в отчет по объему траншей будет выводится собранная по ним информация, а сам расчет проводится не будет.

Объем ручной работы

Объем ручной работы задается в процентах и пересчитывается в метры кубические от всего объема траншеи.

Сохранение ранее нанесенных отметок при сборе новых отметок по ЦМР

В расширенные настройки программы добавлена опция, которая укажет команде сбора отметок не удалять ранее нанесенные отметки.

Чтобы включить сохранение отметок необходимо выполнить следующие шаги:

- 1. Выполнить команду ВИК_ОПЦ_ВСЕ.
- 2. Программа выведет окно расширенных настроек программы.
- 3. Найти категорию настроек «mark-opt» и в ней опцию «delete-opt-mark». С найденной опции необходимо снять флажок.
- 4. Закрыть настройки нажав кнопку ОК.

Теперь при сборе отметок созданные ранее блоки отметок удалятся не будут. Быстро удалить не нужные отметки можно с помощью команды AutoCAD Быстрый выбор.

Программа ПроектВиК2011 постоянно улучшается благодаря активному участию пользователей. Свои предложения по усовершенствованию или включению в состав комплекса новых программ Вы можете направлять по адресу <u>vik@uniservice-europe.co.uk</u> Для получения бесплатной технической консультации обращайтесь по телефону +7 (499) 346-87-18 и по электронной почте (служба поддержки) <u>vik@uniservice-europe.co.uk</u>